
I

liOic FILE Copy

0oQ9-Baseline Ada Library
O Technical Report
(N Reusability Guidelines

DTIC

ELECTEIZ IV
NOV14

STARS-QC-003401001101
5 May 1989

IS 10 - °L ' IT D

bU'T1WfION sTATUVilN A

Apuob ub Mean;

.it=,uuu ml

REPORT DOCUMENTATION PAGE JForm Approved

P.,o.sf reac- i,; urocer to,,% c.tcI.t~or of rtorr~atior, is estnm ec, to average 1 owr oer -sw,-se -mcitjai'; the timne for ritvw"fg instructions, searc."M; f. %I--: gals sources
ga~ i ne m-antanfig1 the Gala neacca. one corr,oeitinq one revievi.nc the collection of .'fo'mallon Sena comnments rega'ring this D~aa" estimate or a-, :rnhei &Well Of This

e eczl : norMat~o. 'ncWo'ng suggetions tor rearucing this ourden to ~Asnrion .eaauarters services. Directorate for irto'fnat,oh Ocefations and Reorl. 121lS jefferson
Z.oei mlcf,.av. Suite 12 4 Arignqr. VA 222024302. a"d to ThIP 0",ce3 o aenom' ame eucgetl iie,~cr Reduction Project (070".188). Washintcin. DC t^.503

r.AG'ENCY U-SE ONLY (Leave bla nk) 2. REPORT DATE 3REORT TYPE AND DATES COVERED

1 5 May 1990 IFinal
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Baseline Ada Library Technical Report,
Reusability Guidelines STARS Contract

Fl 9628-88-D-0031
6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation
12010 Sunrise Valley Drive GR-7670-1 012 (NP)
Reston, VA 22091

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC) 00340
Hanscom AFB, MA 01731-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION; AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)

SThis technical report proposes guidelines for the design and coding
of reusable software parts. The proposed guidelines are intended for
use by the STARS Prime Contractors and Subcontractors to foster the
development of software components that offer common capabilities
within well-defined application domains and that are suitable for
installation in a library of reusable parts. The requirements
presented by the guidelines are directed principally to software
developers and, secondarily, to maintainers of a reusable parts
library. Each proposed guideline or requirement is accompanied by
a rationale, and where possible, illustrative examples. The guide-
lines are based upon STARS task Q9 experience and interpretations of
the materials listed in the references section of the report.

14. SUBJECT TERMS IS 1. NUM ER OF PAGES

software parts 'd)(6P 8
Software characteristics A, 40 .PCE CODE

17. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 19. SEOURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

STARS-QC-00340/001/01

TECHNICAL REPORT

STARS Q9 BASELINE Ada LIBRARY

REUSABILITY GUIDELINES

CONTRACT NO. F19628-88-D-0031

CORL 00340

5 MAY 1989

PUBLICATION NO. GR-7670-1012 (NP)

Prepared for:
Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Defense Systems

12010 Sunrise Valley Drive
Reston, VA 22091

5 May 1989 STARS-QC-00340/001/01

PREFACE

This document was produced by Software Architecture and Engineering in
support of the Unisys STARS Prime contract. This CDRL is for the Baseline
Ada Library Task, Q9, of the Uhlsys STARS First Increment. It is CDRL type
A006 number 00340 for the Reusability Guidelines.

Aceess jn For
NTIS GPA&I

DTIC TAB El
Unannounced [l
Justification

As abillty Codes

Di sC11

5 May 1989 STARS-QC-00340/001/01

TABLE OF CONTENTS

1.0 Introduction ... 2
2.0 Assumptions .. 3
3.0 Approach ... 4

3.1 (AUSNIT] Characteristics 5
3.2 (IBM360] Characteristics 6
3.3 Modifiability and Understandability 6

4.0 Proposed Guidelines 8
4.1 Purpose ... 8
4.2 Part Definitions 8

4.2.1 Simple Part 8
4.2.2 Generic Part 9
4.2.3 Schematic Part 9
4.2.4 Complex Part 9
4.2.5 Interface Part 9
4.2.6 Implementation Part 9
4.2.7 Bundled Part 9
4.2.8 Rationale 9

4.3 Part Selection 10
4.3.1 Utility .. 10
4.3.2 Completeness 11
4.3.3 Uniqueness 12

4.4 Part Design/Coding 13
4.4.1 Reliability 14
4.4.2 Understandability 14

4.4.2.1 Uniformity 15
4.4.2.2 Simplicity 17

4.4.3 Loose Coupling 18
4.4.4 Cohesion 19
4.4.5 Isolated Error Handling 20
4.4.6 Independence and Portability 21

4.4.6.1 Compiler Independence 21
4.4.6.2 System Independence 23

4.5 Part Identification 24
5.0 Recommended Tools 26
6.0 Bibliography and References 28
Appendix A: ANNA .. 30
1.0 Advantages ... 30
2.0 Disadvantages .. 30
3.0 Examples ... 31

3.1 Parameter Constraints 32
3.2 Access Program Behavior 32
3.3 Relations Between Access Programs 33

4.0 ANNA Examples .. 34
4.1 Annotated List Package 34
4.2 Annotated Set Package 37
4.3 Recommendation 38

i

5 May 1989 STARS-QC-00340/001/01

1. Introduction

This technical report proposes guidelines for the design and
coding of reusable software parts. The proposed guidelines are
intended for use by the STARS Prime contractors and
subcontractors to foster the development of software components
that offer comon capabilities within well-defined application
domains and that are suitable for installation in a library of
reusable parts. The requirements presented by the guidelines are
directed principally to software developers and, secondarily, to
maintainers of a reusable software parts library. Each proposed
guideline or requirement is accompanied by a rationale and, where
possible, illustrative examples. The guidelines are based on Q9
task experience and interpretations of the material listed in the
"References" section of this report.

This report is divided into six sections, the first being
this introduction. The second section defines the assumptions
that apply to the guidelines presented in Section 4. Section 3
explains the basic approach taken in the development o the
guidelines. Section 5 recommends tools to assist in tne
achievement and enforcement of the guidelines discussed in
Section 4. Section 6 lists the references to the literature used
to develop this report. Appendix A is a report on an experiment
performed using ANNA, a Ada annotation system (ANNA], to complete
the functional specification and verify the implementation of a
few selected reusable software components.

2

5 May 1989 STARS-QC-00340/O01/01

2. Assumptions

The context for the proposed guidelines is defined by the
following assumptions.

(1) Parts are restricted to compilable Ada software
components and any accompanying documentation, test
data, and test programs required by the guidelines
themselves. This permits the guidelines to be more
specific and makes it possible to recommend software
tools to identify and validate reusable parts.

(2) No particular overall design methodology is assumed.
Whereas the application of certain software development
methodologies and principles, e.g., object oriented,
modular decomposition, and information hiding, are more
likely to result in software components that are
reusable, the guidelines concentrate on the attributes,
discernible in a part itself, that make it reusable.

(3) It is assumed that software developers are working in
an environment that encourages their interest in
reusing software components; that they have an interest
in developing and accessing a library of reusable
parts--whether maintained locally or nationally; that
issues of security, proprietary rights, maintenance of
part integrity, and the like, are resolved; that there
is an active staff to maintain the library; and that
the application domains of interest to library
subscribers have been established and are supported by
well-defined taxonomies.

(4) The greatest productivity from reuse can be realized if
parts are reused "as is". A reusable part is a software
component that can be used in more than one system or
application. Parts can be reused "as is" or "with
modification". These guidelines emphasize the
development of parts with attributes that promote their
reuse "as is" or whose modification is well-defined by
a set of parameters (e.g., generic parts).

(5) All documents referenced by the proposed guidelines are
available to all developers and librarians working in
the STARS Sofware Engineering Environment (SEE). This
assumes that the reusability guidelines should not be a
standalone document, but may refer to other STARS
standards and requirements that promote part
reusability.

3

May 1989 STARS-QC-00340/001/01

3. Approach

A comparison of [AUSNIT], (IBM360], (REUSE], and the draft
report of these guidelines reveals different approaches to
defining guidelines for the reuse of software components.
(AUSNIT] divides its guidelines according to three areas of
concern: design, Ada interface, and documentation. [IBM360]
takes a structural approach by organizing its guidelines
according to the sections of the Ada Language Reference Manual
(LRM). [REUSE] attempts to discuss software component reuse from
the perspective of the software life cycle model--starting with
the procurement process, requirements definition, parts
specification, and so on, all the way through to parts
maintenance in a library of reusable parts.

These guidelines have taken a different approach by asking
what are the characteristics of a software part that make it
reusable, and for which of these characteristics can guidelines
be formulated to ensure that a part exhibits these
characteristics. This approach has advantages over those of the
other guidelines in that it attempts to link directly reuse
characteristics with design and coding practices. The
expectation is that the more these guidelines are followed in the
development and selection of parts, the more likely it is that
they will exhibit the characteristics that help make them
reusable, and, the greater the likelihood that they in fact will
be reused. The direct link between a guideline and one or more
reuse characteristics also provides a greater motivation for
following a guideline--something lacking in the other reusability
guidelines, and compels a precise definition of the
characteristics of reuse.

Table 1 compares the reuse characteristics listed by
[AUSNIT] and [IBM360] with the characteristics proposed for
organizing the guidelines of this report. The table divides the
reuse characteristics into three groups: one for minimal
selection criteria; one for those characteristics most applicable
to interfaces, and one for those most applicable to
implementations. The characteristics of understandability and
reliability are important for both interfaces and
implementations, but obviously have a different meaning in each
context. Simplicity and uniformity are grouped under
understandability since together they support that
characteristic. Definitions for the proposed characteristics are
to be found in the appropriate subsection of the proposed
guidelines. An explanation of the mapping of the [AUSNIT] and
(IBM360) characteristics to the proposed reusability
characteristics is provided here.

4

5 May 1989 STARS-QC-00340/001/01

Table 1
Comparison of Reuse Characteristics

Proposed [AUSNIT] [IBM360)

Selection Criteria

Utility Application Independence --
Completeness Accessibility --
Uniqueness -- Efficiency

Design/Coding Characteristics

Interface

Understandability Communicativeness Understandability
Simplicity Simplicity, Balance,

Conciseness Information Hiding
Uniformity Self-Descriptiveness Uniformity

Reliability Functional Scope Completeness
Loose Coupling -- Loose Coupling
Cohesion Generality High Cohesion,

Abstractness,
Primitiveness

Implementation

Understandability Modifiability Modifiability
Simplicity Simplicity Localization
Uniformity Self-Descriptiveness

Reliability -- Reliability
Independence Machine Independence Environment Independence
Isolated Error Handling -- Error Handling,

Protection Against Error

3.1. [AUSNIT] Characteristics

(AUSNIT] does not define the reusability characteristics
listed in Table 1 under the [AUSNIT) column, so that the mapping
to the proposed characteristics on the left may not be totally
accurate. In any case, in Table 1 application independence is
assigned to utility because it is the principle reason for
selecting a part for a reuse library. Accessibility is matched
with completeness because completeness requires that all
references in a part to other parts be resolvable in the context
of the library. Without this the part may not be ciupletely
accessible. The mapping of communicativeness, simplicity,

5

5 May 1989 STARS-QC-00340/O01/01

conciseness, and self-descriptiveness for interfaces to
understandability, simplicity, and uniformity is straightforward.
Functional scope implies that the interface of a part leaves
nothing to be desired in terms of the operations or data types
provided, and this corresponds to the meaning of reliability for
specifications as defined here, i.e., the specification can be
trusted to provide all necessary operations. Generality can be
achieved by a high level of cohesion. Code that is
understandable is modifiable, so modifiability has been mapped to
understandability. Machine independence is certainly one aspect
of code Independence. The remaining reusability characteristics
listed under (AUSNIT] map directly to proposed characteristics.

3.2. [IBM360] Characteristics

(IBM360] takes its list of reusability characteristics from
[REUSE]. In Table 1, efficiency is mapped to uniqueness because
it provides a reason for having more than one implementation of a
part in the reuse library. Balance between generality and
specificity and information hiding are two characteristics that
keep the interface simple. Completeness here refers to the
adequacy of an interface which the proposed guidelines define as
interface reliability. Abstractness and primitiveness are two
aspects of highly cohesive interfaces. Again modifiability is a
result of understandability, and localization is one aspect of
the simplicity of an implementation. The remaining reusability
characteristics listed under [IBM360] map directly to proposed
characteristics.

3.3. Modifiability and Understandability

The mapping between understandability and modifiability
requires further explanation. (AUSNIT] and [IBM360] bcth regard
modifiability as a reuse characteristic. This report has a more
limited view of the usefulness of modifiability.

Modifiability only has relevance for implementations (Ada
"private parts" (7.2) and "bodies" (3.9)), as Table 1 implies.
The modification of specifications can only be trivial (additions
or deletions of operators or parameters) before it crosses over
into a full redesign, and, as such, does not require any
guidelines. (A modification of a specification implies an
inadequacy of the original specification, and raises the issue of
whether the new specification should supplant the original.)
Generic specifications are certainly modifiable through generic
instantiations (12.2), but modifiability in this case can only
refer to a selection criteria (is a generic specification to be
preferred to a non-generic specification), since by its nature a
generic specification is modifiable. In order to transform a
non-generic specification into a generic specification, one need
only consider what elements are to be parameterized and follow

6

5 May 1989 STARS-QC-00340/O01/01

the Ada LRM for declaring a generic specification.

Having limited modifiability to implementations, one cannot
formulate any real guidelines to ensure modifiability because the
issue is too broad in scope, i.e., what is the realm of
possibilities that the implementation must acconiuodate. Without
reviewing a specific implementation and without knowing all
contexts in which the part might be used, the issue becomes even
more intractable. If the elements of possible change can be
parameterized, then a generic specification will be the
appropriate solution. Otherwise, everything is possible and so
nothing can be anticipated or acconmmodated in the implementation.
[IBM360] does provide a few guidelines that address
"modifiability" in that, if followed, make it easier to change
the ranges on type declarations and the value of constants.
These same rules support ease of code maintenance and code
clarity, and represent good Ada coding practice. As such, this
report prefers to include these guidelines with
understandability.

Understandability is itself a vague characteristic. What is
clear to one coder may not be clear to another. But one may
assume that if certain aspects of a part are attended to, it may
have a greater chance of being understood. This report
identifies simplicity and uniformity to be the two attributes
supportive of understandability that can be defined and for which
guidelines can be written.

7

5 May 1989 STARS-QC-00340/001/01

4. Proposed Guidelines

This section describes the proposed guidelines for the
design and coding of reusable Ada software parts.

4.1. Purpose

These guidelines provide criteria to assist

(1) software developers to design and develop Ada
specifications and code that have maximum potential for
reuse, and

(2) librarians of reusable parts libraries to determine the
suitability of a software part for inclusion in their
libraries.

It is assumed that the reader is familiar with ANSI/MIL-STD-1815A
and the goals of the STARS Prime effort. ANSI/MIL-STD-1815A
terms, when they first appear, are emphasized by the use of
quotes and a reference in parentheses to the defining section of
the standard. References are also made in the rationales to the
experiences of the Q9 Task funded under the STARS Prime contract.

4.2. Part Definitions

For the purpose of these guidelines a software part is an
Ada "compilationunit" (10.1) or a set of Ada compilation-units
that can be parsed and semantically analyzed in conformance with
ANSI/MIL-STD-1815A. A part is distinguished from a tool in that
it cannot execute by itself. A code generator is a tool used to
create a part. Executable programs used to test parts are test
programs.

These guidelines distinguish various types of parts, as
defined in this section. The definitions included here are not
necessarily exclusive. A schematic part may be complex. A
bundled part may consist of no more than a part descriptor,
package specification, and package body. Parts that are schematic
or complex may bundle parts that are simple, generic, schematic,
or complex. For example, a menu manager may rely on a virtual
terminal interface and implementation to effect its required
display functions.

4.2.1. Simple Part

A simple part is a single non-generic compilation unit with
an empty "context-clause" (10.1), e.g., a subprogram, a package
specification, a package body.

8

5 May 1989 STARS-QC-00340/001/01

4.2.2. Generic Part

A generic part is a "genericdeclaration" (12.1) with its
implementing "subprogrambody" (6.3) or "package-body" (7.1).

4.2.3. Schematic Part

A schematic part is a set of compilationunits created by a
code generator and some input that defines the non-persistent
elements of the generated set, e.g., in a generated parser the
grammnar rules define the non-persistent input set.

4.2.4. Complex Part

A complex part is a set of compilable compilationunits that
collectively implement a single functional or data abstraction,
e.g., virtual terminal, menu manager.

4.2.5. Interface Part

Interface part refers to the non-private part of an Ada
package specification, or the specification of an Ada subprogram.

4.2.6. Implementation Part

Implementation part refers to the private part of an Ada
package specification, or a package or subprogram body.

4.2.7. Bundled Part

A bundled part is the logical set of compilationunits
needed to define and implement a complex part, including the
part's interface and implementation, all dependent interfaces
(each bundled with an implementation), and all supporting
documentation (part descriptor, manuals), tools, test programs,
and test data necessary to identify, understand, use, test, and
validate the part. (Part descriptor is described in the "Part
Identification" section of these guidelines. For an example of a
supporting tool, consider the program that creates Ada packages
from menu definitions that are accessed by a menu manager. In
general, a bundled schematic part must include the code
generator, as a supporting tool, and the input data set used by
the generator to produce the schematic part.)

4.2.8. Rationale

A precise definition of part is required to establish the
kinds of objects the reuse library must be preparcd to handle and
how best to serve those that access the library. The different
definitions make it possible to fine-tune the guidelines and make
them more specific.

9

5 May 1989 STARS-QC-00340/001/01

Requiring that parts be compilable makes it easier to ensure
a part's integrity and to identify its dependencies. Non-
compilable Ada code fragments are not considered parts because
they are difficult to describe, categorize, and verify. Tools
are not considered parts because these guidelines wish to avoid
prescribing user interface and runtime environment requirements,
which a tool's design must address. (For example, some software
tools in the SIMTEL20 use a command line interface to obtain user
selected runtime options, while others obtain user options
through Ada Text Io programs. For tools both the method and
format of user interface must be prescribed to ensure uniformity
of interface and tool portability. In addition, the SEE may
prescribe virtual interfaces for certain tools.)

The distinction between interface and implementation parts
highlights the fact that Ada package specifications may include
implementation details in the private part. This is important,
because it means that one interface may not support multiple
implementations. The distinction is also important because the
guidelines for interfaces, which emphasize "reuse as is", are
somewhat different from the guidelines for implementations, which
emphasize "reuse with modification". However, as defined here an
interface part may be less than a compilation unit and an
implementation part more than a compilation_unit so that one may
not be able to identify a simple part strictly as an interface or
implementation part.

The notion of bundled part is introduced to permit the reuse
library to include and reference more than compilable code.
(These guidelines make no assumption about the way a library
retrieves or references parts.) As a practical matter, the more
complex a part, the more it may require supporting documentation,
tools, test programs, and test data. These guidelines require
that supporting documentation, tools, test programs, and test
data be bundled with a part, but, except for a part descriptor,
they do not prescribe their format or content.

4.3. Part Selection

A software part is selected for inclusion in a library of
reusable parts on the basis of whether it exhibits utility,
completeness, and uniqueness. These characteristics are
considered minimal, and do not necessarily preclude other
criteria that reuse part librarians may adopt. This section also
serves to refine the definition of part by excluding minimally
useful, incomplete (inadequately defined), and duplicative parts.

4.3.1. Utility

A software part has utility if the function it provides or
the data type it defines performs or abstracts an essential,

10

5 May 1989 STARS-QC-00340/001/01

common, and persistent requirement or element of an application
domain (vertical utility) or more than one application domain
(horizontal utility).

Parts that provide esoteric functions or define types that
are implementation bound have a low probability of reuse.
Commonality studies and taxonomies for a particular application
domain will indicate functions or data abstractions that persist
within the application throughott various tools or systems. The
software parts that realize th functions or abstractions are
likely candidates for reuse.

The utility of a schematic part may be limited by the input
data set used to define the part, while the input data set
itself may have greater utility as far as reuse is
concerned. (In this case "reuse with modification" becomes
more valuable than "reuse as is".)

Rationale: In the Q9 task commonality of function across
diverse tool sets endowed a part or potential part with utility.
Even where a function was not realized in many tool sets, as long
as its conceptual realization would have provided greater utility
to a tool, e.g., a virtual terminal, the potential part was
deemed to have utility. The perceived usefulness of a part has
to extend beyond the current set of software tools or systems
using the part.

4.3.2. Completeness

A software part has completeness if it provides all the
necessary source code, external references, and documentation to
compile and use it successfully.

* Test data and/or test programs are essential for
completeness if one cannot judge the adequacy of a part's
operation without it.

* Schematic parts lack completeness if they do not reference
their code generator and defining input data set.

Implementations for the interfaces referenced in a bundled
or complex part are not essential for completeness, if the
interfaces provide sufficient information to code an
alternate implementation.

Rationale: A part that does not adequately describe its
external references or the interfaces it depends on may present
insurmountable obstacles to reuse. The Q9 task found difficulty
in reusing parts whose dependencies were not clearly described or
isolated. For example, the virtual terminal, a complex part
examined by Q9, was more easily ported because the bundled part
included a test program that could be used to determine the

11

5 May 1989 STARS-QC-00340/001/01

reliability of its performance in a Unix VT100 terminal/Sun
console environment. Having the implementations for all
referenced interfaces is certainly desirable, but is not
essential for reusing a complex or bundled part. Inadequate
interfaces make reuse impossible, while the absence of
implementations may only raise the cost of reusing a part. A
good interface should make that cost more predictable.

4.3.3. Uniqueness

An interface part is unique if it represents a standard
specification, a non-standard specification, or an approved
alternative to a standard specification. (It is assumed that the
reuse library initially hosts Ada interfaces that represent the
SEE's accepted standard specifications.)

An implementation part is unique for one or a combination of
the following reasons:

(1) environmental (hardware, operating system, ANSI/MIL-
STD-1815A Chapter 13 constructs, special compiler
features);

(2) algorithmic (e. g., for graphics B-spline versus cubic
spline);

(3) Booch component forms (see section 3.3 of EBOOCH] and
Table 2);

(4) tuning factors (size, speed, efficiency).

Because an Ada "package declaration" (7.1) can be both an
interface part and an implementation part, the definition of
uniqueness allows for multiple package_declarations,
provided that the difference between each

Table 2
Booch Component Forms

Concurrent Space Garbage Iterator
Collection

Sequential Bounded Managed Noniterator
Guarded Unbounded Unmanaged Iterator
Concurrent Controlled
Multiple

12

5 May 1989 STARS-QC-00340/001/01

package declaration is only discernible in the private part
of the package declaration.

* Where interface parts compete to implement a specification,
and the differences between competing parts can be
parameterized, a generic part should be used as the standard
interface.

* The unique features of a part that distinguish it from its
competitors should be documented by the reuse library and
made available as a part selection criterion.

Rationale: Uniqueness is a necessary condition to prevent
cluttering the reuse library with duplicate parts. Care must be
taken to prevent the inclusion of parts that differ only in
nomenclature. Interface parts that implement standard
specifications should not be duplicated. The reuse library also
has the obligation to expand its collection of parts in a
rational manner, which includes documenting the differences
between parts that at least superficially provide the same
functionality. (It is an open question whether one includes a
highly useful part that is non-standard, but implemented, while a
standard interface is defined, but unimplemented. For example,
the Q9 baseline library includes a virtual terminal that does not
follow CAIS. Should this part be included in the library? In
general, as a matter of policy should the library concern itself
with competing standard interfaces?)

4.4. Part Design/Coding

This section defines the characteristics that promote part
reusability and prescribes design and code guidelines for each
characteristic. The first column of Table 1 lists these
characteristics, which are understandability (simplicity,
uniformity), reliability, loose coupling, cohesion, independence,
and isolated error handling. Reliability and understandability
apply both to interfaces and implementations, while loose
coupling and cohesion apply to interfaces, and independence and
isolated error handling to implementations.

The guidelines presented here address the reuse
characteristics of compilation units--the minimal part component.
Distinctions are made in the definitions of characteristics and
their guidelines for different kinds of parts, when required. For
example, a complex part may not be able to demonstrate all the
characteristics described here because it may have to "with"
parts that are not independent or lack cohesion. This is not to
be regarded a failing of the complex part as a whole, but a
recognition of the fact that some complex parts may interface to
other parts that are not reusable across systems or may be poorly
designed.

13

5 May 1989 STARS-QC-00340/001/01

4.4.1. Reliability

An interface part is reliable if it compiles and is adequate
and complete, i.e., the types and operators defined by the
interface provide either singly or in combination all avenues of
access to the exported type that a user might need, or the part
follows an accepted standard.

An implementation part is reliable if it performs as
specified and required.

* A reliable part exhibits consistency between documented
behavior and actual performance.

* A reliable part is upwardly compatible with all previous
versions.

* A reliable part documents all known "bugs".

* A reliable implementation does not use the pragma SUPPRESS.

* Confidence in reliability is achieved by unit testing,
system testing, repeated usage without unexpected failure,
and no occurrence of undocumented behavior.

Rationale: The modification of a part's interface for reuse
may suggest a lack of generality in the part's design. Standard
interfaces, such as CAIS, purport to be complete and do not
warrant modification. Performance is the only measure of
reliability for an implementation. The minimal information
required here and in the documentation standards should provide
sufficient information on a part's reliability. The rule on
pragma SUPPRESS is intended to ensure parts in a reuse library do
not use this pragma, but there is no objection to its use,
especially in embedded systems, if the justification for its use
is documented. The pragma may be commented out for an
implementation to satisfy this rule. The more complex a part, the
more difficult it may be to prove its reliability. Use of
compilable annotations, such as described in [ANNA], offers a
means of verifying the constraints and semantics of software
parts.

4.4.2. Understandability

A part is understandable if it conforms to minimal standards
of documentation, nomenclature, and format (uniformity) and is
simple.

* Understandability is essential for interfaces, and
desirable, but not essential for implementations.

14

5 May 1989 STARS-QC-00340/001/01

* Understandability is not essential for an implementation, if
"reuse as is" is assumed, provided that the implementation
is reliable.

* Understandability is essential for an implementation, if
"reuse with modification" is assumed, since modification is
impossible if the part cannot be comprehended.

* Standard format and nomenclature and simple code are
helpful, but not essential for understandability, whereas
standard documentation is essential for understandability if
it requires information not provided in the Ada code itself,
but is necessary for correct use of the part.

4.4.2.1. Uniformity

A software part has uniformity if it has a standard format,
uses standard nomenclature, and is described by standard
documentation.

* Standard format can be achieved and enforced through the use
of formatters. (These guidelines do not recommend any
particular format, since any standard format that is adopted
by STARS will ensure uniformity. The standard format
proposed [STANDARDS] is acceptable, but currently there is
no formatter that implements [STANDARDS].)

In addition, the following guidelines, applicable to the
format of identifiers, are useful but not enforceable through
formatters:

* Underscores must separate the words of an identifier
(3.6.1.3 of (IBM360]).

* Overly similar names are not used (3.6.1.4 of
[IBM360]).

Standard nomenclature can be achieved by adherence to the
taxonomy exported by the reuse library. This taxonomy should
establish conventions for naming parts, functions, abstract
data types and their operators. (Adherence to this
guideline will help ensure that developers do not
inadvertently redevelop parts already exported by the reuse
library, and can help identify possible new parts for the
library.)

* Standard documentation can be enforced through the use of a
program development language (PDL). A PDL provides the
following advantages:

(1) A uniform means of expression for documenting and
explaining parts.

15

5 May 1989 STARS-QC-00340/001/01

(2) Greater opportunities for automated support in managing
parts.

(3) The means to identify inconsistencies between comments
and compilable code.

(4) Enforcement of requirements for specific information
essential to correct use and understanding of parts.

A PDL requires the use of labeled comments (directives) in
order to ensure that specific information is provided with a
part. These guidelines recommend the following directives be
used for types and program units declared in interfaces and
implementations. (These directives are based on [BYRON].)

Algorithm: for implementations; identifies the
algorithm by name if standard or by reference if published,
or provides a high level description.

Effects: describes conditions that cause exceptions to
be raised; explains semantics of a program unit of a part;

Errors: lists any text the part associates with runtime
errors to identify and explain their occurrence. (When an
error occurs during the execution of a part, the text may be
directed to a terminal or error log.)

Invariant: for types; describes assumptions about the
type or object whose violation may result in an error.

Modifies: describes the global variables modified by
the unit.

Overview: for interfaces describes usage; for
implementations describes the implementation.

Notes: describes any design assumptions for a program
unit that are important and must be satisfied for correct
usage; describes obligations--actions whose effects
propagate to the interface; lists host and target
dependencies, built-in limitations.

N/A: lists the directives that have not been used.

Raises: lists exceptions raised by a program unit.

Recovery: for interfaces; indicates what actions may be
taken to recover when an exception is raised;

Requires: for interfaces; describes preconditions
imposed on the user of the unit of a part.

16

5 May 1989 STARS-QC-00340/001/01

Tuning: describes performance and size constraints.

Rationale: Uniformity supports reuse by making it easier to
identify and understand a part's purpose, use, and limitations.
The directives proposed here provide additional information
essential and useful for using a part correctly. The use of
formatters and PDL tools makes it easier to enforce uniformity
standards. For example, it is much simpler to submit a part to a
formatter prior to installation into a parts library to ensure
standard indentations or reserved word formats than to ask
programmers to follow such conventions. Standards in
nomenclature are important to ensure that similarities between
parts are not masked by names, but they are much more difficult
to develop and enforce. These guidelines merely indicate that
there are advantages to establishing some standards in this area.
For example, in the development of list and string parts for Q9,
"&" was used to identify the operator for string concatenation
and list appending because of the similar semantic connotation.

4.4.2.2. Simplicity

An interface is simple if it is loosely coupled and has

model cohesion.

* See sections on loose coupling and cohesion.

* The identifiers of functions with the same input list but
different result types should not be overloaded (3.8.1.2 of
[IBM3601).

* Interfaces must not expose implementation details.

An implementation is simple if it exhibits the following
characteristics:

* Numeric literals are used only in declaration blocks of the
compilationunits of the part.

* Nesting of packages or subprogram units is no deeper than
one level.

* There are no GOTO's in the part.

* There are no double negatives in the implementing code of
the part.

* No boolean expression uses both AND's and OR's.

* No USE clause appears in a context-clause in the part.

* Loop statements use explicitly declared types for integer
ranges (3.7.2 of [IBM360]).

17

5 May 1989 STARS-QC-00340/001/01

* Nested "if" statements are avoided by use of "elsif"'s
(3.7.3.1 of (IBM360]).

* Program units that open files close them before completion.

* Types are used for integer discrete ranges (3.5.2.1 of
[IBM360]).

* Types or subtypes are used for array index designations.
(3.5.2.2 of (IBM360]).

* Named constants are used for parameter defaults (3.8.1.3 of
(IBM360]).

Rationale: These features are not essential for reusability,
but their violation warrants scrutiny because an unduly complex
part is difficult to understand, maintain, and prone to error.
Numeric literals require an explanation--why one value versus
some other. Where a literal relates to an internally defined
constraint, attributes can be used instead to recover the value.
Where a literal relates to an exogenous variable, its declaration
can be isolated to a separate part that characterizes all
exogenous factors. Where a literal is arbitrary, a comnent must
note this. Packages and subprogram units that are not visibly
coupled with their enclosing scope should not be nested. Nested
units are difficult to access for reusability, and unless a
nested unit is coupled with its enclosing unit, there is no
justification for the nesting. Double nega;ives are unnecessary
and confusing. Use clauses only hide the origin of identifiers
and must be avoided.

4.4.3. Loose Coupling

(The following definitions are taken from [EMBLEY-FEB87]).

Compilationunit A is visibly coupled with compilation-unit
B if A accesses directly the data structures of B.

Compilationunit A is surreptitiously coupled with
compilationunit B if it uses undocumented information about
compilationunit B's data structures.

Compilationunit A and B are loosely coupled if they are
neither visibly nor surreptitiously coupled.

* An interface part has loose coupling if it prevents the
parts that depend on it from being visibly and
surreptitiously coupled with it.

* Visible coupling is prevented by exporting data abstractions
using "private" (7.4) and especially "limited private" (7.4)
types.

18

5 May 1989 STARS-QC-00340/001/01

* Surreptitious coupling is prevented by full disclosure of a
part's external effects in the part's interface.

* Implementations, when accessing an interface, must rely only
on the documented behavior described in a part's interface.

* The values of exported constants should be deferred or
access programs should be used to return the values of
constants.

* Interfaces must never export objects.

* Always provide for the initialization of private and limited
private types.

Rationale: Loosely coupled parts are easier to reuse because
all dependencies are clearly specified and isolated.

4.4.4. Cohesion

[EMBLEY-FEB87] defines five strengths of cohesion with
respect to abstract data types, with the highest cohesion
strength being model. Model cohesion is defined negatively in
terms of the four other strengths--separable, multifaceted, non-
delegation, and concealed. As defined here cohesion applies only
to parts that export abstract data types (ADT). Model cohesion
is achieved in a part if it does not have:

separable strength
An ADT part has separable strength if the part exports
an operator (function or procedure) that does not use a
domain of the ADT it exports: or the part has a
logically exported domain of the ADT that no operator
of the part uses; or the part has two or more logically
exported domains whose operators do not share any of
the domains of the ADT.

multifaceted
An ADT part has multifaceted strength if it does not
have separable strength, and it exports two or more
domains of the ADT. Because it is not separable some
operator must share two or more exported domains.

non-delegation
An ADT part has non-delegation strength if it has
neither separable nor multifaceted strength, and it has
an operator that can be delegated to a more primitive
ADT.

concealed
An ADT part has concealed strength if it has neither
separable, multifaceted, nor non-delegation strength

19

5 May 1989 STARS-QC-00340/001/01

and it has a logically hidden ADT.

* Interfaces exhibiting model cohesion are to be preferred to
those that do not, all other features being equal.

* There is no necessity to declare related program units in
one package if they do not require access to a common
abstract data type. (Grouping of related functions is a
convenience.)

Rationale: Cohesion is not essential for reusability per se,
but an interface that has model strength is more general, and,
therefore, more likely to provide a common capability that can be
reused. (See [EMBLEY-FEB87] for illustrative examples of the
five cohesion strengths.)

4.4.5. Isolated Error Handling

* Simple and generic parts must export all exceptions that
they raise, unless the exception is handled within an
implementation part.

If explanatory text is associated with an exception, the
part must not use TextIo to display the text when the
exception is raised. Instead, either the part must provide
on its interface access to the text, or it must pass the
text to another compilationunit that logs or displays the
text associated with the exception.

* No compilationunit of a part may propagate a predefined
exception without renaming it. (3.9.2.2 of [IBM360]).

* For each declared exception on an interface, a formal
comment must describe the conditions that raise the
exception.

* In general, exceptions should not be used as a substitute
for normal methods of altering the control sequence of a
part.

Rationale: Part reuse is hindered by idiosyncratic methods
of handling errors. Requiring the isolation of the transmittal
of error messages makes a part more reusable as it makes no
assumptions about how a system is communicating with its user.
By isolating the interface, the user of the part has greater
freedom to alter the explanatory text associated with an
exception. It is also important, especially for real time
embedded systems, that they have the ability to intercept and
handle exceptions when they occur. Because a part cannot know
the complete context of its use, it is futile to raise exceptions
it does not export.

20

5 May 1989 STARS-QC-00340/001/01

4.4.6. Independence and Portability

A software part is independent if it is reliable and
compiles without error or modification under at least two
different compilers and executes to normal completion without
modification on at least two different operating systems.

A schematic or complex part is independent if all of its
simple dnd generic parts are independent.

A software part is portable if its interface and
implementation parts are independent and all the interface parts
it "with"'s are independent. (The implementation parts
associated with each "with"'d interface part may or may not be
independent.)

* All independent parts are portable, but a portable part may
not be independent.

* The guidelines of Section 2 of (PAPPAS] are hereby
incorporated by reference, with the following
qualifications:

(1) isolation of dependent code is preferred to coding to
the "weakest" system,

(2) coding should not be constrained by consideration of
compiler features that violate the Ada LRM.

Further guidance here concentrates on compiler and system
independence.

4.4.6.1. Compiler Independence

A software part is compiler independent if it is reliable
and compiles under two or more Ada compilers without modification
and error on one or more operating systems.

* Compiler independence is achieved by avoiding standard
numeric types, non-standard pragmas, and special utilities
provided by a compiler that depend on peculiarities of an
operating system.

* Where avoidance of compiler dependencies is impossible the
part should be made portable by isolation of compiler
dependencies in a separate part.

Rationale: All standard numeric types are dependent on a
compiler's choice of bit representation, which in turn depends on
the underlying hardware. On the 09 task segmentation errors were
encountered by the fact that Alsys Standard.Integer is not
equivalent to Verdix Standard.Integer. This problem can be

21

5 May 1989 STARS-QC-00340/001/01

isolated in one of two ways:

(1) Declare a separate package of numeric types as subtypes
of the appropriate standard numeric types, and use
these types instead of the standard numeric types.
Create a separate package for each available compiler.
For example, the Q9 task created a package called
PortableNumericTypes--one for the Alsys compiler and
one for the Verdix compiler. The Verdix version
included the following type declarations (among
others):

subtype SHORT SHORT INTEGER is Standard.TinyInteger;
subtype SHORT INTEGER is Standard.ShortInteger;
subtype INTEGER is Standard.Integer;
subtype LONGINTEGER is Standard.Integer;

The Alsys version included the following subtype
declarations (among others):

subtype SHORT SHORT INTEGER is Standard.ShortInteger;
subtype SHORT,_INTEGER is Standard.Integer;
subtype INTEGER is Standard.LongInteger;
subtype LONGINTEGER is Standard.LongInteger;

(These declarations standardize INTEGER representation
for the two compilers at 32 bits and prevent the need
for different versions of parts that are dependent on
the underlying representation. For example, the
conversion of DURATION to STANDARD.INTEGER is
acceptable under Verdix, but not possible under Alsys,
while conversion of DURATION to
PORTABLENUMERICTYPES.INTEGER is always possible. In
this way parts that have the DURATION to INTEGER
conversion but use PortableNumeric Types do not need
more than one version for both compilers.)

(2) Declare one package that defines the numeric types in
terms of absolute universal ranges. In the this
example Q9 sought an integer type that was the largest
that either the Alsys or Verdix compilers could
represent in a Sun Unix environment. This could have
been achieved by the following declaration:

type INT is range System.MinInt .. System.MaxInt;

The use of subtypes as in the first example offers the advantage
of access to all supporting attributes and Text Io functions of
the Standard numeric types. The disadvantage lies in maintaining
more than one copy of PortableNumericTypes. The special type
declaration of the second example has a disadvantage in that
TextIo programs must be redefined for the special type since
such programs depend on standard numeric types (e.g., STRING uses

22

5 May 1989 STARS-QC-00340/001/01

POSITIVE and TEXTIO.COUNT is implementation defined).

In the case of non-standard pragmas or special compiler
features, the functions that depend on these should be isolated
in separate packages. For example, the Q9 task declared a
System Environment package parallel to the Alsys provided package
for use in a Verdix environment and then implemented a separate
package body to support the interface with the Verdix compiler.
(System Environment provided functions such as ARGCOUNT,
ARGVALUE, and so on, to retrieve user entered connand line
arguments accessible through the underlying operating system.)

4.4.6.2. System Independence

A software part is system independent if it is reliable and
executes to normal completion on two or more operating systems.

* System independence is achieved by avoiding use of
ANSI/MIL-STD-1815A Chapter 13 constructs (e.g.,
representation clauses), interface pragmas that access
operating system utilities or machine coded programs,
dependence oru operating system defined entities such as file
and directory naming conventions, and reliance on the values
of System.SystemName, System.StorageUnit, and
System.MemorySize, etc.

* Where avoidance is impossible, the access to these special
utilities must be isolated in separate compilationunits to
facilitate ease of conversion for potentially reusable parts
that may depend on these characteristics.

* The interface and effects of system dependent utilities must
be well documented and isolated in a bundled part.

Rationale: These guidelines have incorporated [PAPPAS] by
reference because of the thoroughness of that document. [AUSNIT]
also provides an excellent discussion of the difference between
reusability and portability. These guidelines value portability
in a part because it is easier to estimate the costs of reusing a
part if system and compiler dependencies have been isolated.

The Q9 task found that the effort of rehosting
compilationunits from one system to another was greatly reduced
if system dependencies were isolated. For example, a package
providing file access functions can hide operating system defined
file naming and access conventions in the low level subprograms
it accesses. An application system that uses the functions of
the file package can avoid knowledge of the actual file
conventions of the operating system on which it will run. When
this is done correctly, the application system only needs to
4dentify files by strings.

23

5 May 1989 STARS-QC-00340/001/01

Portability is probably a more practical goal than part
independence. Certainly, parts that are classified in [REHOST] as
Software Abstractions should be independent by definition; those
classified as Hardware Hiding are by definition compiler or
system dependent; while those classified as Functional
Abstractions should be at least portable.

4.5. Part Identification

* A software part (generic, schematic, complex) shall be
identified by a part descriptor.

* The part descriptor shall be associated with a part by name
and shall have as a minimum the following directives:

Part Name: a descriptive name identifying the part,
consistent with the taxonomies for the part's domain.

Aliases: synonyms for the part name; consistent with
the taxonomies for the part's domain.

Domain: the application area the part belongs to; if
domain independent "ADT" or "Software Abstraction"; the
reuse library's supported taxonomies shall define the range
of possible domains.

Function: the purpose of the part; if a specification
its purpose is to "define".

Objects: what the part declares or manipulates.

Environment: a description of the hardware, operating
systems, and compilers under which the part has been
compiled and used.

Keywords: possible indices for the part; consistent
with the reuse library taxonomies.

Test Level: level the part has been tested; one or more
than one of the following levels in Table 3 are possible.

Rationale: The descriptor directives listed here are thought
minimal, and values for aliases and keywords optional.
Additional directives are possible and should be drawn from those
listed in Section 7.9.2.2 "Submission Information" of [REUSE] and
the requ'rements of the reuse library itself. The aliases,
domain, and keywords directives are based on the constructs
appearing in the ADT descriptor of [EMBLEY-MAR87] and are
intended to help the reuse library to classify the part. (The
"description" directive used by [EMBLEY-MAR87] has been omitted

24

5 May 1989 STARS-QC-00340/001/01

Table 3
Test Levels

Level Description

Executed Used in executable program
Walk Through Tested by inspection
Global Top level functionality tested
Unit Outputs and effects of each

program unit tested
Complete Unit Unit tested and each decision

point of each program unit
tested

because the "overview" directive is required for each program
unit of a part. The environment directive is important to
establish the system environment with which the part is
compatible "as is". The notion of function and object is based
on [PRIETO-DIAZ] and is to be preferred to an elaborate
description.

25

5 May 1989 STARS-QC-00340/O01/01

5. Recommended Tools

The Q9 task relied on a number of software tools to provide
a basis for the requirements of the guidelines and to assist in
the development of reusable parts. These tools are listed here
along with a brief description of their function and usefulness
for reuse.

Pager: This is an Ada program that permitted the physical
bundling of software parts. Basically it takes a list of files-
-in this case Ada compilationunits with their supporting
documentation and a part descriptor--and places them in a single
file. The tool is also used to unbundle a part. Such a tool
would be useful if parts are to be submitted to and extracted
from a reuse library in a bundled format.

Formatter: Both the Alsys and Verdix compilers offer
formatters. The NOSC/Ada tools also included a "pretty-printer"
that Q9 rehosted. Attention was given to the formatter that best
approximated the STARS foundation format standards, which was the
Alsys formatter. However, none of these formatters is able to
check for special directives. Formatters should test for required
directives to ensure that parts submitted to the library are
properly documented. They also need to be more robust in the
types of format options that they support. For example, none of
the formatters listed here would permit a selected identifier to
appear as "XXX.nnn". A DIANA based formatter could also detect
violations of simplicity and transform the code to comply. For
example, "uses" clauses could be removed automatically and the
affected simple identifiers replaced with selected identifiers.

StandardsChecker: The NOSC/Ada standards checker and style
checker offer some capability to check fox the use of standard
numeric types, nesting, and the use of USE in a context clause.
It is not hard to imagine development of standards checker to
verify most of the criteria of the proposed guidelines. In
particular, the attributes of independence, coupling (except for
surreptitious), cohesion (in part), and simplicity could all be
validated with a standards checker. (Uniformity can be
maintained by formatters and automated PDL, while reliability is
amenable to automated testing and ANNA.)

Byron: Q9 did not have Byron (a PDL) to use, but many of its
directives were found useful for the reuse parts. Byron also
supports a tool to analyze code dependencies and embedding which
would have proved useful in a commonality study and to provide
evidence where reuse principles were violated. However, Byron
had three recognizable deficiencies: (1) the required comment
identifiers could not be altered ("--I" conflicts with ANNA
conventions); (2) some directives had to appear in two places--
the specification and the body--which makes little sense if one
realizes that the same interface may be used with different

26

5 May 1989 STARS-QC-00340/001/01

implementations, and, more importantly, the interface should be
the defining document at all times; and (3) some required
comments were thought excessive such as the "synopses" and
comments on subprogram parameters. But the concept of standard
comments and standard PDL regulated by a software tool is
important.

ANNA: This tool offers an important capability to document
and verify the constraints and semantics of Ada programs. Its
value to reuse lies in a standard language to describe program
constraints and semantics. At all times short and precise
formulae are to be preferred to wordy and ambiguous comments that
cannot be tested or verified. An experiment was performed using
this tool to explore the approach offered by ANNA; the results of
this experiment are reported in Appendix A.

Others: Additional tools could be devised to check the
completeness of a bundled part. Such a tool would be able to
enforce the standards for a bundled part and would be able to
check all external references against the units in a library.

27

5 May 1989 STARS-QC-00340/001/01

6. Bibliography and References

(ANNA]
Luckham, David C., Friedrich W. von Henke, et. al. ANNA, A
Language for Annotating Ada Programs, Reference Manual,
Springer-Verlag, Berlin, 1987.

[AUSNIT]
Ausnit, Christine, Christine Braun, et. al. Ada Reusability
Guidelines, Softech, Inc., Waltham, Massachusetts, April
1985.

[BOOCH]
Booch, Grady. Software Components with Ada, The
Benjamin/Cummings Publishing Company, Inc., 1987.

(BYRON]
The Byron User's Manual, Version 1.1, Intermetrics, Inc.,
Cambridge, Massachusetts, 1984.

[CAMP]
McNicholl, Daniel G., Constance Palmer, et al. Common Ada
Missile Packages (CAMP), Defense Technical Information
Center, May 1986.

[EMBLEY-FEB87]
Embley, David W. and Woodfield, Scott N. "Cohesion and
Coupling for Abstract Data Types," Proceedings Sixth Phoenix
Conference on Computers and Communications, Phoenix,
Arizona, February 1987, pp. 229-234.

[EMBLEY-MAR87]
Embley, David W. and Woodfield, Scott N. "A Knowledge
Structure for Reusing Abstract Data Types," Proceedings of
the 9th International Conference on Software Engineering,
Monterey, California, March-April 1987, pp. 360-368.

[FREEMAN]
Freeman, Peter. "Reusable Software Engineering: Concepts
and Research Directions," ITT Proceedings of the Workshop on
Reusability in Programming, 1983, pp. 129-137.

[IBM360]
Reusability Guidelines, STARS Program CDRL 360, IBM Systems
Integration Division, Gaithersburg, Maryland, 17 December
1988.

[MEYER]
Meyer, Bertrand. "Reusability: The Case for Object-Oriented
Design", IEEE Software, Vol. 4, No. 2, March 1987, pp. 50-
64.

28

5 May 1989 STARS-QC-00340/001/01

[PAPPAS]
Pappas, Frank. Ada Portability Guidelines, Softech, Inc.,
Waltham, Massachusetts, March 1985.

(PARNAS]
Parnas, D. L., P. C. Clements, and D. M. Weiss. "Enhancing
Reusability with Information Hiding," ITT Proceedings of the
Workshop on Reusability in Programming, 1983, pp. 240-247.

[PRIETO-DIAZ]
Prieto-Diaz, Ruben; Freeman, Peter. "Classifying Software
for Reusability," IEEE Software, January 1987, pp. 6-16.

[Q13-REPORT]
"Evaluation/SEE Inclusion Criteria". Document Number
STARS-QS-21013/001/00. November 11, 1988.

[REHOST]
"Technical Report Tools Rehosted"; CDRL 00300, Document
Number STARS-QC-00300/001/00. Software A&E, November, 1988.

(REUSE]
Reusability Guidebook, V4.4 (draft), STARS, September 1986.

(STANDARDS]
"Ada Code Standards" (Draft), STARS, 15 December 1987.

(TRACZ87]
Tracz, Will. "Automatic Parameterization: A Case Study,"
Computer Systems Laboratory ERL 402, Stanford University, 29
October 1987.

[TRACZ88]
Tracz, Will. "Modularization: Approaches to Reuse in Ada,"
IBM SID, 23 September 1988.

29

5 May 1989 STARS-QC-00340/001/01

Appendix A: ANNA

As part of the STARS Q9.4.5 task (see [REHOST]), select
reusable parts (sets and lists) were commented using ANNotated
Ada (ANNA), Release 0.52, whose syntax and semantics is described
in [ANNA], to explore its advantages and disadvantages. Two areas
of interest were explored. These included using ANNA to

(1) Describe formally the expected behavior of access
programs, and

(2) Describe the expected relations between access
programs.

ANNA can also be used to describe conditions that raise
exceptions and to prescribe additional constraints on subprogram
parameters. Examples of ANNA commented code are provided in a
below and in Section 4.

1. Advantages

The advantages of ANNA are:

(1) Because ANNA commetits are compilable under the ANNA
tool, they offer a means to verify the correctness of
Ada interfaces and implementations without affecting
the object image of the Ada source code when compiled
under normal Ada compilers.

(2) ANNA allowed us to express formally the effects of
access programs on an interface. This in turn made it
possible to uncover design flaws or inconsistencies.
This occurred in two ways--(a) either the formal
representation of the effects of an access program made
the inconsistent behavior of its implementation readily
apparent, or (b) the formal representation exposed a
flaw in the design itself because it focused attention
on what was actually taking place in terms of a formal
abstraction versus the procedural implementation.

(3) ANNA makes it possible to prevent surreptitious
coupling (defined in Section 4.4.3) on interfaces by
providing a means to describe formally the expected
behavior of access programs.

2. Disadvantages

The chief disadvantages of ANNA are implementational:

(1) Many transformations to an executable object image are
not implemented in the current version of ANNA. This
meant that except for very simple constructs, we could

30

5 May 1989 STARS-QC-00340/001/01

not produce an object module with the ANNA generated
constraints. For example, although ANNA semantically
analyzes most annotations, it does not yet produce the
code for axioms. Thus, we could not demonstrate how
the axioms would ensure the correctness of the
underlying code.

(2) ANNA exposes the difficulty of trying to describe the
behavior of access programs on access types when the
real interest is in the values they reference. This is
apparent in the List example, where assertions are
being made about returned lists as being identical but
not equal to an input list.

(3) ANNA itself is difficult to learn. A textbook, much
like those used to describe Ada, is required to help
understand the correct way to use ANNA. An
understanding of propositional calculus is also
necessary.

(4) ANNA cannot be used to describe constraints on objects
outside of Ada. For example, in an attempt to put ANNA
comments in the package specification
SystemEnvironment, we could use ANNA to constrain the
input to ARG VALUE by formally requiring it to be
greater than or equal to the value returned by
ARGCOUNT, but input to ENVVALUE could not be
constrained because there was no way to describe the
domain of acceptable Unix environmental variables.
These entities could only be defined by the operating
system.

3. Examples

The following examples show code commented without ANNA and
with ANNA. They are only fragments of more more complete
compilation units. ANNA annotations are preceded by

"--I" or "--:"
where "--I" denotes an annotation (containing assertions about
Ada program states very similar in form to propositional logic)
and "--:" denotes virtual Ada text (auxiliary statements used to
support the annotations, but written in pure Ada).

Although one does not need the ANNA tool to write comments in
ANNA style, the fact that ANNA will parse and analyze the
comments and produce executable code to enforce the behavior
being described, gives ANNA its unique advantage.

31

5 May 1989 STARS-QC-00340/001/01

3.1. Parameter Constraints

The functions in this example represent an Ada solution to
the C-oriented interface between executable programs and the UNIX
shell. In UNIX, the main entry of a program can be passed a
variable number of arguments (from the UNIX command invoking the
executable), which is presented to the main program as two
parameters: a variable-length array of variable-length strings,
and an integer representing the actual length of the array. In
the Ada example below, this interface is hidden behind two
separate, but logically related, functions.

Without ANNA:

function ARG COUNT return POSITIVE;

-- returns the number of arguments on the command line

ILLEGALARGINDEX exception;

function ARG VALUE (INDEX : in NATURAL) return STRING;
-- returns the INDEXth argument on the command line of
-- the program
-- if INDEX is >- ARG COUNT, the function will raise
-- ILLEGALARGINDEX exception

With ANNA:

function ARG COUNT return POSITIVE;

-- returns the number of arguments on the command line

ILLEGALARGINDEX exception;

function ARG VALUE (INDEX : in NATURAL) return STRING;
-- I where not (INDEX >- ARGCOUNT) -> raise ILLEGALARGINDEX;

3.2. Access Program Behavior

Without ANNA:

type List is private;

function "&" (List1, List2 : in List) return List;

32

5 May 1989 STARS-QC-00340/001/01

-- Effects:
-- This returns a list containing Listi and List2.
-- If Listi and List2 are the same list then a copy is made
-- of Listi and List2 is appended to the copy.

With ANNA:

type List is private;

--: function Identical (L1, L2 : in List) return Boolean;

function "&" (Listi, List2 : in List) return List;
-- where return L : List ->
--I if Identical (Listi, List2) then
--I not Identical (L, List1) and not Identical (L, List2)
--I else
-- I Identical (L, Listi) and not Identical (L, List2)
--I end if;

The implementation of Identical is defined in the package body.
List is declared in the private part as an access type.

3.3. Relations Between Access Programs

Without ANNA:

generic
type Universe is (<>);

package SetPackage is

type Set is Private;
NullSet : constant Set;

function Is_Empty (Set1 : Set) return Boolean;
function Is Member (Element : Universe; OfSet : Set)
return Boolean;

subtype Number is Integer
range 0 .. (Universe'Pos (Universe'Last) -

Universe'Pos (Universe'First) + 1);
function NumberIn (Seti : Set) return Number;

private
type Set is Array (Universe) of Boolean;
Null Set : Constant Set :- (Others -> False);

end SetPackage;

33

5 May 1989 STARS-QC-00340/001/01

With ANNA:

generic
type Universe is (<>);

package SetPackage is

type Set is Private;

NullSet : constant Set;

--: function "-" (Seti, Set2 : Set) return Boolean;

function IsEmpty (Setl : Set) return Boolean;
function Is Member (Element : Universe; OfSet : Set)
return Boolean;

subtype Number is Integer
range 0 .. (Universe'Pos (Universe'Last) -

Universe'Pos (Universe'First) + 1);
function NumberIn (Seti : Set) return Number;

-- axiom
-- I for all X : Set; E : Universe ->
-- Is_Empty (X <-> SetPackage."-" (X, NullSet),
-- (not (IsEmpty (X)) <-> NumberIn (X) > 0,
-- (NumberIn (X) - 0) <-> IsEmpty (X),
-- (IsMember (E, X)) -> not (Is Empty (X),
--I not (IsEmpty (X)) ->
-- (exist F : Universe -> IsMember (F,X));

private
type Set is Array (Universe) of Boolean;
Null Set : Constant Set :- (Others -> False);

end Set-_Package;

4. ANNA Examples

The following subsections demonstrate the use of current
ANNA capabilities in two actual package specifications from the
designated set of reusable components, a list abstract data type
package and a set abstract data type package.

4.1. Annotated List Package

generic

type ItemType is private;
with function Equal (X, Y : in Item-Type) return Boolean;

34

5 May 1989 STARS-QC-00340/001/01

package Lists is

type List is private;

Empty_List : exception;

--: function Identical (L1, L2 : in List) return Boolean;
function ListEqual (Li, L2 : in List) return Boolean;

function "&" (List1, List2 : in List) return List;
-- I where return L : List->
-- I if Identical (List1, List2) then
-- I not Identical (L, Listi) and not Identical (L, List2)
-- I else
-- I Identical (L, Listi) and not Identical (L, List2)
-- I end if;

function "&" (Element1, Element2 : in Item Type) return List;

function "&" (Element : in ItemType;
Listi : in List) return List;

--g where return L : List ->
-- I not Identical (L, Listi) and not List-Equal (L, Listi);

function "&" (Listi : in List;
Element : in ItemType) return List;

-- I where return L : List ->
-- I Identical (L, Listi) and not ListEqual (L, Listi);

function Length (L : in List) return Integer;

function Firstvalue (L : in List) return ItemType;

function Tail (L : in List) return List;

function IsIn (L : in List;
Element : in Item-Type) return Boolean;

function Isempty (L in List) return Boolean;

-- I axiom
-- I for all El, E2 : Item Type; L : List; N : Integer->

-- I List Equal (L, (El & E2)) ->
-- I Equal (Firstvalue (L), El) and
--J Equal (Firstvalue (Tail (L)), E2) and
-- J Length (L) - 2,

-- I Length (L) - N -> Length (El &L) - N + 1,
-- I (Length (L) > 0) <-> (exist E Item-Type -> Is_in (L, E)),

--J Equal (Firstvalue (El & L), El),
-- J List-Equal (Tail (El & L), L),

35

5 May 1989 STARSQOCOO34/00l/O1

--I Is in (El & L, El),
-is Isin (L & El, El),
--I Is in (El & E2, El),
--I is-in (El & E2,,E2),

--I not (Is-in (L, El)) <-> Isempty (L);

private

type Cell;
type List is access Cell;

type Cell is
record

Info :Item_-Type;
Next : List;

end record;

end Lists;

36

5 May 1989 STARS-QC-00340/001/01

4.2. Annotated Set Package

generic
type Universe is (<>);

package Set-Package is

type Set is private;
NullSet : constant Set;

function "*" (Set_1 : in Set;
Set 2 : in Set) return Set;

function "+" (Element : in Universe;
Set_1 : in Set) return Set;

function "+" (Setl : in Set;
Set_2 : in Set) return Set;

function "+" (Setl : in Set;
Element : in Universe) return Set;

function "-" (Set 1 : in Set;
Set 2 : in Set) return Set;

function "-" (Set_1 : in Set;
Element : in Universe) return Set;

function "<" (Set_1 : in Set;
Set 2 : in Set) return Boolean;

function "<-" (Set_1 : in Set;
Set 2 : in Set) return Boolean;

function Is Member (Element : in Universe;
OfSet : in Set) return Boolean;

-- : FUNCTION "-" (Set_1 Set; Set_2 : Set) RETURN Boolean;

function Is-Empty (Set_1 in Set) return Boolean;

subtype Number is
Integer
range 0
(Universe'POS (Universe'LAST) - Universe'POS (Universe'FIRST) + 1);

function NumberIn (Set_1 : in Set) return Number;

-- I axiom
for all X, Y : Set; E : Universe ->

-- Empty Set
-- Number In (NullSet) - 0,
-- I not (Is Member (E, Null Set)),
-- Empty/Non-Empty Sets
-- Is_Empty (X) <-> SetPackage."-" (X, NullSet),
-- I (not (IsEmpty (X))) <-> NumberIn (X) > 0,
-- I (NumberIn (X) - 0) <-> Is-Empty (X),
--I (Is-Member (E, X)) -> not (IsEmpty (X)),
-- I not (IsEmpty 1X)) ->

37

i

5 May 1989 STARS-QC-00340/001/01

-- I (exist F : Universe -> IsMember (F, X)),
-- Set Intersection
-- i IsMember (E, (X*Y)) ->
-- I (Is_Member (E, X) and IsMember (E, Y)),
-- Set Union
--I IsMember (E, (X+Y)) ->
-- I (Is-Member (E, X) or IsMember (E, Y)),
-- Set Difference
-- I IsMember (E, (X-Y)) ->
--1 (Is Member (E, X) and (not IsMember (E, Y))),
-- Element Addition
-- I SetPackage."-"
-- I (SetPackage."+" (E, X), SetPackage."+" (X, E)),
-- I Is Member (E, (E + X)),
-- I IsMember (E, (X + E)),
-- Element Substraction
-- i IsMember (E, X) <-> not (Is-Member (E, (X - E))),
-- Subset
-- i SetPackage."<" (X, Y) <-> (for all F : Universe->
-- I Is Member (F, X) -> IsMember (F, Y)),
-- Proper Subset
-- I SetPackage."<-" (X, Y) <->
-- I SetPackage."<" (X, Y) and not SetPackage."-" (X, Y);

private

type Set is array (Universe) of Boolean;
NullSet : constant Set :- (others -> False);

end SetPackage;

4.3. Recommendation

For ANNA to be used fully in the development of the SEE, it
itself needs to be fully implemented. It would be a worthy task
for STARS to complete its development and insist on the use of
ANNA in the code being developed. We cannot overestimate the
precision and clarity that formal propositional annotations give
to an interface, and highly recommend the further development of
ANNA. Unfortunately, resource constraints for this task limited
exploration of ANN use to relatively simple software parts.

38

